MetalJet X-ray sources
For synchrotron-like performance in the home lab

The Excillum MetalJet series of X-ray sources are based on our unique metal-jet technology. Achieving significantly higher brightness and smaller spot sizes than any other available microfocus X-ray source, the MetalJet can create very brilliant and small beams enabling the closest possible to synchrotron performance in the home lab.

The metal-jet technology can thereby e.g. enable a major increase of the image acquisition speed with maintained resolution in an X-ray imaging application or measurement throughput improvement combined with better precision and accuracy in an analytical application.

Especially in the microfocus X-ray spot size range, from about 5 µm diameter to a few tens of µm, a source based on a liquid-metal jet anode significantly outperforms a classical solid anode X-ray source.

The liquid metal-jet concept

The MetalJet X-ray tubes are conventional microfocus tubes with the solid-metal anode replaced by a liquid metal-jet. This type of anode is continuously regenerated and already in the molten stage. Thereby, the classical power limit of an X-ray source, when the anode is permanently damaged by the electron beam, may be disregarded. The metal-jet supports higher electron-beam power and can therefore generate higher X-ray flux.

Excillum MetalJet D2+ image

Regular anode

Liquid metal-jet anode

Watch the videos below for an inside view of the metal-jet technology.

Solid anode vs liquid metal-jet
A look inside the Excillum MetalJet

Power loading capability

The X-ray power of all electron-impact X-ray generators is limited by the thermal power loading of the anode. In conventional solid anode technology, the surface temperature of the anode must be well below the melting point in order to avoid damage and this is fundamentally limited by the anode target material properties, primarily the melting point, the vapor pressure and especially the thermal conductivity. The liquid-metal anode is different since the limitation to maintain the target at well below melting point in removed. This is due to the fact that the material is already molten and that it is regenerative by nature, supplying new fresh target material at a rate of close to 100 m/s. This means that the electron beam and anode interaction may be destructive.

Extreme brightness

Somewhat counter-intuitively, the power loading capability of small-focus X-ray tubes roughly scale with the diameter and not the area of the e-beam focus. Therefore, the brightness is  inversely proportional to the source diameter.By combining extreme power loading capability and a small electron focus, a liquid-jet-source can achieve unprecedented brightness at micron spot sizes.

X-ray spectra of liquid metal

In order to reach different X-ray emission lines, different metal alloys are used. First generation metal-jet sources feature metal alloys that are molten at more or less room temperature. Still, several alloys have emission characteristics similar to regular solid anodes. Future upgrades can also include alloys with higher melting points.

Gallium alloy

A gallium (Ga) rich alloy has Kα emission of 9.2 keV which is close to the copper (Cu) Kα emission line at 8.0 keV.

Indium alloy

An indium (In) rich alloy has Kα emission of 24.2 keV which is close to the silver (Ag) Kα emission line at 22.1 keV.

Spot quality

Thanks to advanced electromagnetic focusing and correctional optics together with a high brightness LaB6 cathode, a high quality e-beam focus is achieved. Together with a continuously generated smooth liquid target surface, the source produces X-ray spots of very high quality.

Tunable size

Both the spot size and the aspect ratio can be tuned freely.

MetalJet X-ray spot shape line
MetalJet X-ray spot shape dot

Source stability

The spatial stability of the source is very high. The image to the right illustrates a spot centroid standard deviation of < 0.1 µm over 24 hours, as taken with pinhole camera mechanically coupled to the source.

MetalJet products

Some MetalJet application areas

Contact us about our products

We have a growing organization and a network of partners with the capabilities and expertise to maximize the benefits of our technology in your application.

Related user stories


High-definition X-ray fluorescence imaging

Max Planck Institute

X-ray Emission Spectroscopy (XES)

Monash University

X-ray phase-contrast imaging

Meiji University

Hard X-ray Photoelectron Spectroscopy (HAXPES)

Aarhus University

Small Angle X-ray Scattering (SAXS)

University of Basel

Small molecule crystallography

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept", you are consenting to this.