Just like visible light, X-rays also experience refraction. The refraction is caused by what is called phase shift through the material the radiation passes. Even though this effect is much weaker for X-rays than for visible light, it can be used to create contrast for imaging.
Phase-contrast imaging requires special techniques to be detected but can be very beneficial. For materials that have low absorption, such as soft biological matter, polymers and many other organic compounds, the phase can give more than 1000 times stronger contrast than absorption. Without going into the detailed physics behind phase contrast, we can still understand the methods that are used to exploit it.
To make phase-contrast imaging, the phase shift induced by the object must be measured. The unfortunate catch is that X-ray detectors don’t measure phase, but only intensity. The phase shift is instead converted to intensity variations, that can be detected. There are several methods to do this, which are all good in different ways.
Compared to absorption-contrast imaging, the requirements on the equipment are in general higher for phase-contrast imaging. To be able to obtain contrast, an X-ray source with high transverse coherence is needed. This means that the source either has to have a small emission spot or has to be moved far away from the object. Both options are traditionally related to very low flux, which leads to very long exposure time. To keep the exposure time short, an X-ray source with a small emission spot that can still maintain a high flux is very beneficial. Another commonly used metric is the source brightness. The source brightness is a measure that includes both coherence and flux and is important to have high in many cases!
Phase-contrast imaging was originally developed for biomedical applications, where it is very beneficial for imaging of soft tissues. Recently, it has seen a growing interest also in materials science, engineering and industrial non-destructive testing.