From synchrotron to home laboratory with a 9 keV high intensity HAXPES-Lab
In the laboratory, led by Professor Atsushi Ogura, the objective is to improve the performance of solar cells and electronics devices based on semiconductor nanotechnology. In October 2018, a significant improvement in material characterization capability was achieved when the Scienta Omicron HAXPES-Lab system was installed. The HAXPES-Lab is a home laboratory-type hard X-ray photoelectron spectroscopy (HAXPES) system with the key components: monochromator, high energy analyzer and a 9 keV X-ray source, the Excillum MetalJet D2+.
The non-destructive technique of HAXPES opens up a window to the bulk, as the technique can characterize the element-specific chemical states sub surface of materials, e.g. at buried interfaces or in the bulk. Previously, 9 keV photoemission had only been possible at synchrotron beamlines but with the introduction of the HAXPES-Lab system experiments in the home laboratory became possible.
“By introducing home-lab HAXPES, continuous measurements for 24 hours a day, 365 days a year became possible. Previously, we were always limited by the available beam time and suffered from long waiting times. But with the HAXPES-Lab we could measure many samples with much faster turnaround from sample preparation, measurement and analysis to refined experiments. This allowed us to significantly accelerate our research and the result was a remarkable improvement in scientific output.”
Professor Atsushi Ogura