Small molecule crystallography uses X-ray diffraction in the determination and study of the three dimensional structure of a material at the atomic and molecular scale. A single crystal of the sample is required and the resulting X-ray structures provide a to scale 3D visual map of the atom types, their relative arrangement and how they are connected in space.
The crystal samples studied are typically, inorganic, organic or organo-metallic compounds, primarily from research in the disciplines of chemistry, geology and physics.
As small molecule X-ray crystallography becomes more automated and routine, there is increasing interest in the study of more difficult and specialist materials where the high brilliance Excillum MetalJet X-ray source is desirable. Use of the MetalJet typically means shorter experiment times, faster structures and higher throughput of samples. Small and weakly diffracting crystals, diffract more strongly providing higher quality data, whilst sensitive crystals can be measured faster with the MetalJet and suffer less degradation accordingly. Twinned crystal data can be more strongly defined using a MetalJet, making it more easily identified and potentially handled. Very weak diffraction effects, inherent to incommensurates, diffuse scattering samples, quasi-crystals and high pressure samples become stronger and may be more readily measured and investigated using the high brilliance X-rays of a MetalJet.